Dérivées des fonctions usuelles

$f(x) = \cdots$	$f'(x) = \cdots$	f dérivable sur \cdots
k constante	0	$ m I\!R$
x	1	$ lap{R}$
x^2	2x	$ lap{R}$
x^n	nx^{n-1}	$\boxed{\mathbb{R} \text{ si } n \geqslant 0, \mathbb{R}^* \text{ si } n \leqslant -1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	${ m I\!R}^*$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0 ; +\infty[$
e^x	e^x	$ lap{R}$
ln(x)	$\frac{1}{x}$	$]0 ; +\infty[$
$\cos(x)$	$-\sin(x)$	$ m I\!R$
$\sin(x)$	$\cos(x)$	$ m I\!R$

Dérivée d'une somme, d'un produit et d'un quotient

Dérivée	Condition
(u+v)' = u' + v'	
$(ku)' = k \times u'$	
(uv)' = u'v + v'u	
$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$	v ne s'annule pas sur I

Dérivées des fonctions composées

Dérivée	Condition
$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$	u ne s'annule pas sur I
$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$	u ne s'annule pas sur I
$(u^n)' = nu'u^{n-1}$	
$(e^u)' = u'e^u$	
$\left(\ln(u)\right)' = \frac{u'}{u}$	u > 0 sur I
$\left(\cos(u)\right)' = -u'\sin(u)$	
$\left(\sin(u)\right)' = u'\cos(u)$	